Begin of page section:
Page sections:

  • Go to contents (Accesskey 1)
  • Go to position marker (Accesskey 2)
  • Go to main navigation (Accesskey 3)
  • Go to sub navigation (Accesskey 4)
  • Go to additional information (Accesskey 5)
  • Go to page settings (user/language) (Accesskey 8)
  • Go to search (Accesskey 9)

End of this page section. Go to overview of page sections

Begin of page section:
Page settings:

English en
Deutsch de
Search
Login

End of this page section. Go to overview of page sections

Begin of page section:
Search:

Search for details about Uni Graz
Close

End of this page section. Go to overview of page sections


Search

Begin of page section:
Main navigation:

Page navigation:

  • University

    University
    • About the University
    • Organisation
    • Faculties
    • Library
    • Working at University of Graz
    • Campus
    Developing solutions for the world of tomorrow - that is our mission. Our students and our researchers take on the great challenges of society and carry the knowledge out.
  • Research Profile

    Research Profile
    • Our Expertise
    • Research Questions
    • Research Portal
    • Promoting Research
    • Research Transfer
    • Ethics in Research
    Scientific excellence and the courage to break new ground. Research at the University of Graz creates the foundations for making the future worth living.
  • Studies

    Studies
    • Prospective Students
    • Students
    • Welcome Weeks for First Year Students
  • Community

    Community
    • International
    • Location
    • Research and Business
    • Alumni
    The University of Graz is a hub for international research and brings together scientists and business experts. Moreover, it fosters the exchange and cooperation in study and teaching.
  • Spotlight
Topics
  • StudiGPT is here! Try it out!
  • Sustainable University
  • Researchers answer
  • Work for us
Close menu

End of this page section. Go to overview of page sections

Begin of page section:
You are here:

University of Graz particle.uni-graz.at Structures and Observables
  • Elementary particle physics
  • News & Events
  • Team
  • Research Career Campus Consortium
  • Institute of Physics

End of this page section. Go to overview of page sections

Begin of page section:
Sub navigation:

  • Elementary particle physics
  • News & Events
  • Team
  • Research Career Campus Consortium
  • Institute of Physics

End of this page section. Go to overview of page sections

Structures and Observables

Axel Maas

The concepts of quantum field theory

Most modern fundamental theories of nature are gauge theories. These are complex theories, in which the observable consequences are highly non-linearly connected to the elementary particles and interactions. Especially, the particles we measure are often emergent ones.

Using analytical methods and large-scale numerical simulations we uncover the structures leading to this emergence, and determine what we can see at experiments. As the underlying mechanisms are often similar, we do so for a wide range of theories, covering electroweak physics and the Higgs, dark matter, grand-unified theories to quantum gravity and beyond. Our work therefore covers the primary laws of nature, from which all physics descends. Our results range from conceptual answers like how a universe is described in quantum gravity, to very concrete experimental predictions like cross sections measurable at colliders like the LHC at CERN in Higgs physics.

Since such theories often contain redundancies and objects, which by themselves can only be auxiliaries, this poses important questions about the ontology of particle physics, i.e. the question, what is real. Aiming at understanding these questions connects our work to philosophy of physics.

aaa ©Uni Graz/Maas
©Uni Graz/Maas
Global phasediag

What we do in detail

Our primary research actiivity center around creating a bridge from a fundamental understanding of quantum gauge theories to their phenomenology. The particular aim is to identify and understand phenomena, which cannot be captured with standard perturbative means, and how they manifest the genuine non-linear structure of quantum theories. Our story so far can be read in two reviews articles, on Brout-Englert-Higgs physics: From foundations to phenomenology and Gauge bosons at zero and finite temperature.

Foundations of quantum-gauge-field theories

So-called gauge theories represent the most common version of particle physics theories. Especially the standard model, but also gravity, and most of their speculated extensions belong to this category. While they have been extremely successful in the description of nature, several very fundamental issues of them are still poorly understood.

One of them is what their physical degrees of freedom are, and how they emerge from the fundamental ones. This entails especially the question of how the mathematical structure is related to the physically observable one. The complex geometric structure of gauge theories made this a challenging problems since more than half a century.

Our aim is to explicitly construct physically observable particle spectra. Likewise, we determine how they are made up from the elementary degrees of freedom, and what kind of mathematical-geometrical structure governs their relation.

Standard model physics

The discovery of the Higgs boson has been one of the greatest scientific discoveries of the recent years. It is the last element of the standard model of particle physics, and a possible gateway to whatever lies beyond. With this discovery, the properties of the Higgs came into the focus of investigations.

The theory underlying the Higgs sector has plenty of enigmas so far. One is that it is not even clear, whether it a real theory, or whether new physics is mandatory to make it a real theory. The other is that there are subtle effects which are not yet accounted for, but which could provide distinct new signatures, like states containing several Higgs bosons or deviations from expectations in experiments.

To fully understand Higgs physics, we investigate and simulate numerically electroweak, Higgs, flavor and top physics in the standard model. We determine signatures for the LHC and future colliders. We furthermore use our understanding of gauge theories to infer how Brout-Englert-Higgs physics work.

Unifying interactions

The standard model has a very peculiar, regular structure. This suggests the existence of an underlying ordering principle, a unifying theory. We expect that such a unifying theory needs to involve the Brout-Englert-Higgs effect to create the apparent independent known interactions, the electromagnetic one, the weak one, and the strong one.

We therefore study how generalized Brout-Englert-Higgs effects act, and how they can help to shape both the known interactions and the flavor structure of the standard model. Especially important are here how the spectrum of known particles emerges in the process. This not only includes known particles, but also dark matter.

Finally, it is not clear how a quantum theory of gravity can factor into this picture. We therefore study how gravity and the Brout-Englert-Higgs effect interact, and also supersymmetry as a possible unifying concept of particle physics and quantum gravity.

Current lectures

  • Advanced Quantum Mechanics (WS 25/26)
  • Beyond the Standard Model (WS 25/26)
  • Introduction to Mathematical Methods (WS 25/26)
  • Linear algebra (WS 25/26)
  • Philosophy of Physics (WS 25/26 and SS 26)
  • PhD seminar “Particle Physics” (WS 25/26)
  • Quantum Field Theory II (SS 26)

Lecture notes

TopicLevelHoursLast updated
AnomaliesPhD4 hoursJuly 2014
Advanced General Relativity and Quantum GravityMaster, QFT recommended2 hours/weekMarch 2024
Advanced Mathematical MethodsMaster3 hours/weekJanuary 2024
Astroparticle PhysicsMaster, QFT recommended2 hours/weekJune 2021
Beyond the Standard ModelMaster, requires QFT3 hours/weekJanuary 2025
Electroweak PhysicsMaster, requires QFT2 hours/weekFebruary 2021
Group theoryMaster2 hours/weekJanuary 2016
HadronphysicsMaster, requires QFT2 hours/weekMarch 2023
Introduction to MathematicsBachelor1 hour/weekAugust 2025
Lattice quantum field theoryMaster, requires QFT2 hours/weekJune 2020
Linear algebraBachelor2 hours/weekAugust 2025
Modern chapters of theoretical physicsBachelor2 hours/weekJune 2021
Methods of Theoretical physics for teachersMaster3 hours/weekJanuary 2025
Nuclear and particle physicsMaster/Teacher of physics2 hours/weekJune 2016

Philosophy of Physics

Supplemental material

Bachelor/Master/PhD2 hours/weekJuly 2018
Programming in Mathematica and C(++)Bachelor2 hours/weekJune 2018
Quantum Field Theory IMaster3 hours/weekMarch 2023
Quantum Field Theory IIMaster, requires QFT I (in parallel)4 hours/weekJanuary 2020
Quantum mechanicsBachelor4 hours/weekMay 2022
Theoretical MechanicsBachelor4 hours/weekFebruary 2017
Theoretical Particle PhysicsMaster2 hours/weekFebruary 2014
Theoretical Particle PhysicsMaster4 hours/weekSeptember 2015
Standard Model of particle physicsMaster, requires QFT2 hours/weekJuly 2011
SupersymmetryMaster, requires QFT2 hours/weekOctober 2022

We offer theses in all areas of our research. Below you find a full list of topics and completed theses. If you are interested, just contact me by email.

 

PhD theses:

 

PhD positions are announced on the Inspire Job Database

 

Completed theses:

Vincenzo Afferrante, Gauge invariant spectra of theories with BEH effect

Ouraman Hajizadeh, QCD-like theories on the lattice and their applications

Walid Mian, Beta-decay of hadrons in a first principle approach

Tajdar Mufti, Non-perturbative aspects of Yang-Mills-Higgs theory

Bernd Riederer, On Gauge-Scalar-Theories: The many aspects of the Brout-Englert-Higgs effect

Pascal Törek, The physical spectrum of theories with a Brout-Englert-Higgs effect

Fabian Zierler, Lattice studies of Sp(4) as a candidate Dark Matter theory

 

Master theses are available in the following areas:

 

Higgs-Higgs scattering beyond standard perturbation theory

Electroweak PDFs for colliders

Weak jets at colliders

Hadronic corrections to the top and Z/W mass

The substructure of the lepton

Black hole properties and interactions in quantum gravity

Reconstruction of the metric from topology in quantum gravity

Observables and fermions in supergravity

 

Completed theses:

Daniel August, Adjoint quarks in technicolor and QCD

Larissa Egger, Possible substructure of an electron

Simon Fernbach, Higgs-PDF study in proton-proton collisions

Veronika Macher, Adjoint and fundamental scalar fields coupled to Landau-gauge Yang-Mills theory

Markus Markl, Black Holes as Quantum Phenomena

Michael Müller, Gravitational bound states in quantum gravity

Dominik Nitz, Masses of custodial singlet vector particles in Yang-Mills-Higgs theory

Eveline Ochensberger, Towards dark matter through the Higgs portal

Felix Pressler, Dark Matter from Quantum Gravity

Sebastian Raubitzek, The size of the W-boson

Franziska Reiner, The non-violation of the Bloch-Nordsieck theorem for the electroweak sector of the Standard Model

Bernd Riederer, Scattering phases in the H->WW* channel

Philipp Schreiner, The manifestly gauge-invariant spectrum of the Minimal Supersymmetric Standard Model

Wolfgang Schleifenbaum, The ghost-gluon vertex in Landau gauge Yang-Mills theory in four and three dimensions

Fabian Veider, NLO corrections for e− e+ → µ− µ+ in a SU(2)+BEH theory via augmented perturbation theory

Stefan Zitz, Functional approach to N=4 super-Yang-Mills theory

 

Bachelor theses are available on the following topics:

 

Weak jets and partial wave analysis of collider processes

Correlators in classical gravity and quantum gravity

 

Completed theses:

Abraham Arevalo Arizaga, Exploration of the Faddeev-Popov operator’s eigensprectrum outside the first Gribov region

Pedram Bazmeh, Search for holomorphic Gribov-copies outside of the first Gribov region

Simon Dampfhofer, Approaches to the shape of the Higgs-PDF using proton-proton collisions

Alexander Egger-Feiel, Eigenspectrum of the Faddeev-Popov operator in SU(2)

Alexander Engertsberger, Geodesics and discrete manifolds within causal dynamical triangulations

Tamara Friedl, Construction of a model action for a zero-dimensional model of the nonanalytic behaviour of the gluon propagator in Landau gauge at zero source strength

Timur Holikov, Kinematics in the VBS/VBF setting

Patrick Jenny, Improving the determination of energy levels in lattice simulations

Dorian Jost, A supersymmetric approach to the Gribov problem within an instanton field configuration

Viktoria Keusch, Category Theory in Analytical Mechanics

David Kneidinger, An algorithmic approach to calculate geodesics in quantum gravity

Paul Kothgasser, Proton Proton Collisions at the LHC and Future Colliders

Michael Mandl, Search for Gribov copies using a modified instanton configuration

Michael Müller, Optimization of SU(2) Landau Gauge-Fixing Algorithms

Nicole Oberth, Investigating the Gribov Problem through the Faddeev-Popov Operator Eigenspectrum in SU(2)

Christina Perner, Metric reconstruction with causal dynamical triangulation

Maximilian Pfandner, Calculation of eigenvalues of the Faddev-Popov-operator to a certain vector potential configuration – a variational approach

Felix Pressler, Lattice Spectroscopy of Strongly Interacting Dark Matter Candidates

Kevin Radl, Dark Matter in Neutron Stars

Daniel Reiche, Influence of Higgs bound states on W/Z scattering at the LHC (in German)

Lukas Reicht, Using machine learning for BSM particle identification

Franziska Reiner, The form of the Higgs-PDF in the proton

Andreas Schindlegger, Search for Gribov Copies Outside the First Griobov Region Using an Oriented Center Vortex Field Configuration

Fabian Veider, Dynamics of the Higgs in the proton

Raphael Wagner, Using machine learning for BSM particle identification

Alicia Wongel, Investigation of a dark matter particle in the Higgs portal model

Lukas Würger, Extraction of the metric within the framework of Causal Dynamical Triangulation

Fabian Zierler, Search for Gribov copies outside the first Gribov region in SU(2) Yang-Mills theory

TopicAuthorsTitlearXivWhereDate
White PaperM. Beneditk et al.Future Circular Collider Feasibility Study Report Vol. 1-3arXiv: 2505.00272 [hep-ex] arXiv: 2505.00274 [physics.acc-ph] arXiv: 2505.00273 [physics.acc-ph] May 2025
Quantum GravityA. Maas, S. Plätzer, F. PresslerHints for a geon from causal dynamical triangulationsarXiv:2504.11047 [hep-lat] April 2025
Astroparticle PhysicsY. Dengler et al.Strongly interacting dark matter admixed neutron stars2503.19691 [hep-ph] March 2025
New PhysicsE. Dobson et al.The observable spectrum for GUT-like theories2501.19212 [hep-lat]PoS LATTICE2024 (2025) 087January 2025
Astroparticle PhysicsY. Dengler, A. Maas, F. ZierlerScattering of SIMPlectic Dark Pions2501.18368 [hep-lat]PoS LATTICE2024 (2025) 153January 2025
Higgs PhysicsA. Maas, D. van Egmond, S. PlätzerSubleading Higgs effects at lepton colliders2409.20131 [hep-ph]PoS ICHEP2024 (2024) 056September 2024
White PaperJ. Andersen et al.Les Houches 2023: Physics at TeV Colliders: Standard Model Working Group Report2406.00708 [hep-ph] June 2024
Astroparticle PhysicsY. Dengler, A. Maas, F. ZierlerScattering of dark pions in Sp(4) gauge theory2405.06506 [hep-lat]Phys.Rev.D 110 (2024) 5, 054513May 2024
Astroparticle PhysicsY. Dengler, A. Maas, F. ZierlerScattering of dark pions in an Sp(4) gauge theory2311.18549 [hep-lat]PoS LATTICE2023 (2024) 103December 2023
New PhysicsA. Maas, P. SchreinerThe manifestly gauge-invariant spectrum of the Minimal Supersymmetric Standard Model2307.10282 [hep-ph]Ann. Phys. 479 (2025) 170050July 2023
Higgs PhysicsA. MaasExperimental signatures of subtleties in the Brout-Englert-Higgs mechanism2305.07395 [hep-ph]Moriond EW 2023May 2023
ReviewA. MaasThe Fröhlich-Morchio-Strocchi mechanism: A underestimated legacy2305.01960 [hep-th]Springer Nature (Cham)May 2023
Astroparticle PhysicsE. Bennett et al.Singlets in gauge theories with fundamental matter2304.07191 [hep-lat]Phys. Rev. D 109, 034504 (2024)April 2023
Higgs PhysicsA. Maas, F. ReinerRestoring the Bloch-Nordsieck theorem in the electroweak sector of the standard model2212.08470 [hep-ph]Phys. Rev. D 108, 013001 (2023)December 2022
New PhysicsE. Dobson, A. Maas, B. RiedererThe spectrum of GUT-like gauge-scalar models2211.16937 [hep-lat]PoS LATTICE2022 (2023) 210November 2022
Astroparticle PhysicsF. Zierler et al.Strongly Interacting Dark Matter from Sp(4) Gauge Theory2211.11272 [hep-ph]EPJ Web Conf. 274 (2022) 08014November 2022
New PhysicsE. Dobson, A. Maas, B. RiedererMultiple breaking patterns in the Brout-Englert-Higgs effect beyond perturbation theory2211.05812 [hep-lat]Annals of Physics 457 (2023) 169404November 2022
Higgs PhysicsB. Riederer, A. MaasInvestigating vector boson scattering: A fully gauge-invariant study2210.17211 [hep-lat]PoS LATTICE2022 (2022) 218October 2022
Astroparticle PhysicsF. Zierler et al.Singlet Mesons in Dark Sp(4) Theories2210.11187 [hep-lat]PoS LATTICE2022 (2023) 225October 2022
Quantum GravityA. MaasTowards testing the Fröhlich-Morchio-Strocchi mechanism in quantum gravity2209.10961 [hep-th]PoS ICHEP2022 (2022) 424September 2022
Higgs PhysicsP. Jenny, A. Maas, B. RiedererVector boson scattering from the lattice2204.02756 [hep-lat]Phys. Rev. D 105, 114513 (2022)April 2022
Astroparticle PhysicsS. Kulkarni et al.Low-energy effective description of dark Sp(4) theories2202.05191 [hep-ph]SciPost Phys. 14 (2023) 3, 044February 2022
Quantum GravityA. Maas, M. Markl, M. MüllerExploratory applications of the Fröhlich-Morchio-Strocchi mechanism in quantum gravity2202.05117 [hep-th]Phys.Rev.D 107, 025013 (2023)Februrary 2022
New PhysicsE. Dobson, A. Maas, B. RiedererExploring SU(3)-Higgs theories2110.15670 [hep-lat]PoS LATTICE2021 (2022) 207October 2021
Higgs PhysicsF. Reiner, A. MaasBloch-Nordsieck restoration in llbar -> qqbar2110.07312 [hep-ph]PoS EPS-HEP2021 (2022) 449October 2021
ReviewP. Berghofer et al.Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches2110.00616 [physics.hist-ph]Cambridge Elements in Foundations of Contemporary PhysicsOctober 2021
Astroparticle PhysicsA. Maas, F. ZierlerStrong isospin breaking in Sp(4) gauge theory2109.14377 [hep-lat]PoS LATTICE2021 (2022) 130September 2021
Higgs PhysicsV. Afferrante et al.Testing the mechanism of lepton compositness2011.02301 [hep-lat]SciPost Phys. 10, 062 (2021)November 2020
Higgs PhysicsA. Maas, R. SondenheimerGauge-invariant description of the Higgs resonance and its phenomenological implications2009.06671 [hep-ph]Phys. Rev. D 102, 113001 (2020)September 2020
QCDA. Maas, M. VujinovićMore on the three-gluon vertex in SU(2) Yang-Mills theory in three and four dimensions2006.08248 [hep-lat]SciPost Phys. Core 5, 019 (2022)June 2020
New PhysicsV. Afferrante, A. Maas, P. TörekA composite massless vector boson2002.08221 [hep-lat]Phys. Rev. D 101, 114506 (2020)February 2020
Higgs PhysicsS. Fernbach et al.Constraining the Higgs valence contribution in the proton2002.01688 [hep-ph]Phys. Rev. D 101, 114018 (2020)February 2020
Higgs PhysicsA. Maas et al.Probing standard-model Higgs substructures using tops and weak gauge bosons1910.14316 [hep-ph]PoS EPS-HEP2019 (2020) 632October 2019
QCD Phase DiagramO. Hajizadeh et al.Exploring the Tan contact term in Yang-Mills theory1909.12727 [hep-ph]Phys. Rev. D 103, 034023 (2021)September 2019
Quantum GravityA. MaasThe Fröhlich-Morchio-Strocchi mechanism and quantum gravity1908.02140 [hep-th]SciPost Phys. 8, 051 (2020)August 2019
Field TheoryA. MaasConstraining the gauge-fixed Lagrangian in minimal Landau gauge1907.10435 [hep-lat]SciPost Phys. 8, 071 (2020)July 2019
New PhysicsV. Afferrante, A. Maas, P. TörekToward the spectrum of the SU(2) adjoint Higgs model1906.11193 [hep-lat]PoS ALPS2019 (2020) 038June 2019
Field TheoryA. MaasThe quenched SU(2) scalar-gluon vertex in minimal Landau gauge1902.10568 [hep-lat]

Phys. Rev. D 99, 114503 (2019)

Source Code

February 2019
QCD Phase DiagramT. Boz et al.Finite-density gauge correlation functions in QC2D1812.08517 [hep-lat]Phys. Rev. D 99, 074514 (2019)December 2018
Higgs PhysicsA. Maas, S. Raubitzek, P. TörekExploratory study of the off-shell properties of the weak vector bosons1811.03395 [hep-lat]Phys. Rev. D 99, 074509 (2019)November 2018
QCDR. Alkofer et al.Bound state properties from the Functional Renormalisation Group1810.07955 [hep-ph]Phys. Rev. D 99, 054029 (2019)October 2018
Field TheoryA. MaasThe quenched SU(2) adjoint scalar propagator in minimal Landau gauge1809.08929 [hep-lat]

Phys. Rev. D 99, 054504 (2019)

Source Code

September 2018
New PhysicsP. Törek, A. MaasOn observable particles in theories with a Brout-Englert-Higgs effect1806.11373 [hep-lat]PoS ALPS2018 (2018) 027June 2018
New PhysicsA. Maas, P. TörekThe spectrum of an SU(3) gauge theory with a fundamental Higgs field1804.04453 [hep-lat]Annals of Physics 397, 303 (2018)April 2018
ReviewA. MaasBrout-Englert-Higgs physics: From foundations to phenomenology1712.04721 [hep-ph]Prog. Part. Nucl. Phys. 106 (2019) 132December 2017
QCDW. Mian et al.Formulating electroweak pion decays in functional methods PoS Hadron2017 (2018) 234December 2017
QCD Phase DiagramO. Hajizadeh et al.Gluon and ghost correlation functions of 2-color QCD at finite density1710.06013 [hep-lat]EPJ Web Conf. 175 (2018) 07012October 2017
New PhysicsP. Törek, A. MaasA study of how the particle spectra of SU(N) gauge theories with a fundamental Higgs emerge1710.01941 [hep-lat]EPJ Web Conf. 175 (2018) 08002October 2017
Higgs PhysicsA. Maas, L. EggerImplications of strict gauge invariance for particle spectra and precision observables1710.01182 [hep-ph]PoS EPS-HEP2017 (2017) 450October 2017
QCDJ. Paris-Lopez et al.Calculating hadron properties from dynamical hadronization in the Functional Renormalisation Group J.Phys.Conf.Ser. 1024 (2018) 1, 012009October 2017
New PhysicsA. Maas, R. Sondenheimer, P. TörekOn the observable spectrum of theories with a Brout-Englert-Higgs effect1709.07477 [hep-ph]Annals of Physics 402 18 (2019)September 2017
Field TheoryA. MaasDependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge1705.03812 [hep-lat]Ann. of Phys. 387 (2017) 29May 2017
Astroparticle PhysicsO, Hajizadeh, A. MaasConstructing a neutron star in G2-QCD1702.08724 [astro-ph.HE]Eur.Phys.J. A53 (2017) 207February 2017
Higgs PhysicsL. Egger, A. Maas, R. SondenheimerPair production processes and flavor in gauge-invariant perturbation theory1701.02881 [hep-ph]Mod. Phys. Lett. A 32, 1750212 (2017)January 2017
QCDA. Maas, W. MianInfluence of broken flavor and C and P symmetry on the quark propagator1611.08130 [hep-ph]Eur.Phys.J. A53 (2017) 22November 2016
QCDW. Mian, A. MaasQuark Propagator with electroweak interactions in the Dyson-Schwinger approach1610.02936 [hep-ph]EPJ Web Conf. 137 (2017) 05015October 2016
Field TheoryA. MaasGauge engineering and propagators1610.05639 [hep-lat]EPJ Web Conf. 137 (2017) 03012October 2016
New PhysicsP. Törek, A. MaasTesting gauge-invariant perturbation theory1610.04188 [hep-lat]PoS LATTICE2016 (2016) 203October 2016
New PhysicsA. Maas, P. TörekPredicting the singlet vector channel in a partially Higgsed gauge theory1607.05860 [hep-lat]Phys. Rev. D 95, 014501July 2016
Astroparticle PhysicsO. Hajizadeh, A. MaasA G2-QCD neutron star (34th international symposium on lattice field theory1609.06979 [astro-ph.HE]PoS LATTICE2016 (2016) 358September 2016
Field TheoryA. MaasThe quenched SU(2) fundamental scalar propagator in minimal Landau gauge1603.07525 [hep-lat]

Eur. Phys. J. C76 (2016) 366

Source Code

March 2016
New PhysicsA. Maas, L. PedroGauge invariance and the physical spectrum in the two-Higgs-doublet model1601.02006 [hep-ph]Phys. Rev. D 93, 056005January 2016
Field TheoryA. Maas, S. ZitzDyson-Schwinger equations and N=4 SYM in Landau gauge1512.06664 [hep-ph]Eur. Phys. J. C 76 113December 2015
Field TheoryA. MaasMore on the properties of the first Gribov region in Landau gauge1510.08407 [hep-lat]Phys. Rev. D 93 054504October 2015
New PhysicsP. Törek, A. MaasTowards the spectrum of a GUT from gauge invariance1509.06497 [hep-ph]PoS LeptonPhoton2015 (2016) 073September 2015
New PhysicsA. MaasField theory as a tool to constrain new physics models1502.02421 [hep-ph]Mod. Phys. Lett. A, 30, 1550135 (2015)February 2015
Higgs PhysicsA. Maas, T. MuftiA spectroscopical analysis of the phase diagram of Yang-Mills-Higgs theory1412.6440 [hep-lat]Phys. Rev. D 91, 113011December 2014
Field TheoryA. MaasPropagators and topology1410.7954 [hep-lat]

Eur. Phys. J. C75 (2015) 122

Source code

October 2014
Higgs PhysicsA. Maas, T. MuftiOn the phase diagram and the singlet scalar channel in Yang-Mills-Higgs theory1410.7935 [hep-lat]PoS LATTICE2014 (2014) 060October 2014
Higgs PhysicsA. MaasObservables in Higgsed Theories1410.2740 [hep-lat]Nucl.Part.Phys.Proc. 273(2016) 1604October 2014
QCD Phase DiagramL. Fister, A. MaasExploratory study of the temperature dependence of magnetic vertices in SU(2) Landau gauge Yang-Mills theory1406.0638 [hep-lat];

Phys. Rev. D 90, 056008;

Source code

June 2014
QCDA. MaasSome more details of minimal-Landau-gauge Yang-Mills propagators1402.5050 [hep-lat]Phys. Rev. D 91, 034502 (2015)February 2014
QCD Phase DiagramB. Wellegehausen et al.Hadron masses and baryonic scales in G2-QCD at finite density1312.5579 [hep-lat]Phys.Rev. D89 (2014) 056007December 2013
Higgs PhysicsA. Maas, T. MuftiTwo- and three-point functions in Landau gauge Yang-Mills-Higgs theory1312.4873 [hep-lat]JHEP 1404 (2014) 006December 2013
New PhysicsD. August, A. MaasThe anomalous mass dimension from the techniquark propagator in Minimal Walking Technicolor PoS LATTICE2013 (2014) 087November 2013
QCDT. Mufti, A. MaasCorrelation Functions and Confinement in Scalar QCD1310.8166 [hep-lat]PoS QCD-TNT-III (2013) 024October 2013
Higgs PhysicsA. Maas, T. MuftiExploring Higgs Sector Spectroscopy1310.7832 [hep-lat]PoS LATTICE2013 (2014) 056October 2013
QCD Phase DiagramL. von Smekal et al.Spectroscopy and the phase diagram at zero temperature and finite density1310.7745 [hep-lat]PoS LATTICE2013 (2014) 186October 2013
Field TheoryA. Maas, D. ZwanzigerAnalytic and numerical study of the free energy in gauge theory1309.1957 [hep-lat]Phys. Rev. D 89, 034011 (2014)September 2013
New PhysicsD. August, A. MaasOn the Landau-gauge adjoint quark propagator1304.4423 [hep-lat]JHEP 01 (2013) 001April 2013
Field TheoryA. Maas, D. ZwanzigerBounds on free energy in QCD1301.3520 [hep-lat]PoS ConfinementX (2012) 032January 2013
Field TheoryA. MaasLocal and global gauge-fixing1301.2965 [hep-th]PoS ConfinementX (2012) 034January 2013
Higgs PhysicsA. Maas, T. MuftiNon-perturbative aspects in a weakly interacting Higgs sector1211.5301 [hep-lat]PoS ICHEP2012 (2013) 427November 2012
QCDE.-M. Ilgenfritz, A. MaasTopological aspects of G2 Yang-Mills theory1210.5963 [hep-lat]Phys. Rev. D 86, 114508 (2012)October 2012
QCD Phase DiagramA. Maas, B. WellegehausenG2 gauge theoriesarxiv: 1210.7950 [hep-latPoS LATTICE2012 (2012) 080October 2012
Higgs PhysicsA. MaasBound-state/elementary-particle duality in the Higgs sector and the case for an excited 'Higgs' within the standard model1205.6625 [hep-lat]Mod. Phys. Lett. A, Vol. 28, No. 28 (2013) 1350103May 2012
Field TheoryA. Maas(Non-)Aligned gauges and global gauge symmetry breaking1205.0890 [hep-th]Mod. Phys. Lett. A, Vol. 27, No. 38 (2012) 1250222May 2012
QCDM. Huber, A. Maas, L. von SmekalTwo- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum resultsarxiv:1207.0222 [hep-th]JHEP 11 (2012) 035July 2012
QCD Phase DiagramA. Maas et al.The phase diagram of a gauge theory with fermionic baryonsarxiv:1203.5653 [hep-lat]Phys. Rev. D 86, 111901(R) (2012)March 2012
QCD Phase DiagramM. Dirnberger, C. Gattringer, A. MaasNo coincidence of center percolation and deconfinement in SU(4) lattice gauge theoryarxiv:1201.1360 [hep-lat]Phys. Lett. B 716, 465 (2012)January 2012
Field TheoryA. MaasOn the structure of the residual gauge orbit1111.5457 [hep-th]PoS QCD-TNT-II (2011) 028November 2011
QCD Phase DiagramA. Maas et al.The gluon propagator close to criticality1110.6340 [hep-lat]Phys. Rev. D 95, 034037 (2012)October 2011
Higgs PhysicsA. MaasEmploying the perturbative definition of the Higgs mass in a non-perturbative calculation1110.0908 [hep-lat]PoS LATTICE2011 (2011) 077October 2011
QCDA. Maas, T. Mendes, S. OljenikYang-Mills Theory in lambda-Gauges1108.2621 [hep-lat]Phys. Rev. D 84, 114501 (2011)August 2011
Field TheoryV. Macher, R. Alkofer, A. MaasA study of the influence of the gauge group on the Dyson-Schwinger equations for scalar-Yang-Mills systems1106.5381 [hep-ph]IJMP A Vol. 27, No. 18 (2012) 1250098June 2011
ReviewA. MaasGauge bosons at zero and finite temperature1106.3942 [hep-ph]Phys. Rep. 524 (2013) 203June 2011
New PhysicsA. MaasOn the gauge boson's properties in a candidate technicolor theory1102.5023 [hep-lat]JHEP 05 (2011) 077February 2011
Field TheoryA. MaasScalar-matter-gluon interaction1102.0901 [hep-lat]PoS FACESQCD (2010) 033February 2011
QCDA. MaasOn the gauge-algebra dependence of Landau-gauge Yang-Mills propagators1012.4284 [hep-lat]JHEP 02 (2011) 076December 2010
Higgs PhysicsA. Maas  PoS ICHEP2010 (2010) 375November 2010
Field TheoryA. MaasOn gauge fixing1010.5718 [hep-lat]PoS LATTICE2010 (2010) 279October 2010
QCDR. Alkofer et al.On the Infrared Behaviour of Landau Gauge Yang-Mills Theory with Differently Charged Scalar Fields1011.5831 [hep-ph]AIP Conf. Proc. 1343 (2011) 179October 2010
Field TheoryA. MaasGauges, propagators, and physics1011.5409 [hep-ph]AIP Conf.Proc. 1343 (2011) 182October 2010
QCDM. Blank, A. Krassnigg, A. Maasspects of gauge-(in)dependence in Bethe-Salpeter-equation studies of mesons1007.3901 [hep-ph]Phys. Rev. D 83, 034020 (2011)July 2010
Higgs PhysicsA. MaasAccessing directly the properties of fundamental scalars in the confinement and Higgs phase1007.0729 [hep-lat]Eur. Phys. J. C71, p1548 (2011)July 2010
QCD Phase DiagramC. Fischer, A. Maas, J. MüllerChiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)1003.1960 [hep-ph]Eur. Phys. J. C68, p165 (2010)March 2010
Field TheoryA. Maas et al.Strong-coupling study of the Gribov ambiguity in lattice Landau gauge0912.4203 [hep-lat]Eur. Phys. J. C68, p183 (2010)December 2009
QCD Phase DiagramA. MaasDescribing gluons at zero and finite temperature0911.0348 [hep-latChin.Phys.C 34, p1328 (2010)November 2009
Field TheoryA. MaasConstructing non-perturbative gauges using correlation functions0907.5185 [hep-lat]Phys. Lett. B689, p107 (2010)July 2009
QCD Phase DiagramE. Bilgici et al.Fermionic boundary conditions and the finite temperature transition of QCD0906.3957 [hep-lat]Few Body Systems 47 p125 (2010)June 2009
QCDR. Alkofer, A. Maas, D. ZwanzigerTruncating first-order Dyson-Schwinger equations in Coulomb-Gauge Yang-Mills theory0905.4594 [hep-ph]Few Body Systems 47 p73 (2010)May 2009
QCD Phase DiagramE. Bilgici et al.Adjoint quarks and fermionic boundary conditions0904.3450 [hep-lat]JHEP 11 (2009) 035April 2009
QCDC. Fischer, A. Maas, J. PawlowskiAspects of confinement from QCD correlation functions0812.2745 [hep-ph]PoS CONFINEMENT8 (2008) 043December 2008
Field TheoryA. MaasGreen's Functions and Topological Configurations0811.2730 [hep-lat]PoS CONFINEMENT8 (2008) 063November 2008
QCD Phase DiagramJ. Danzer, C. Gattringer, A. MaasChiral symmetry and spectral properties of the Dirac operator in G2 Yang-Mills Theory0810.3973 [hep-lat]JHEP 01 (2009) 024October 2008
QCDC. Fischer, A. Maas, J. PawlowskiOn the infrared behavior of Landau gauge Yang-Mills theory0810.1987 [hep-ph]Annals of Physics 324 (2009), p2408October 2008
QCDT. Mendes et al.Infrared Propagators in MAG and Feynman gauge on the lattice0809.3741 [hep-lat]SPMTP 08, p33 (2008)September 2008
Field TheoryA. MaasMore on Gribov copies and propagators in Landau-gauge Yang-Mills theory0808.3047 [hep-lat]Phys. Rev. D79, 014505,2009August 2008
Field TheoryA. Cucchieri, A. Maas, T. MendesLinear covariant gauges on the lattice0806.3124 [hep-lat]Comput.Phys.Commun.180 p215 (2009)June 2008
QCDA. Cucchieri, A. Maas, T. MendesThree-point vertices in Landau-gauge Yang-Mills theory0803.1798 [hep-lat]Phys. Rev. D 77, 094510 (2008)March 2008
QCDA. Maas, S. OljenikA first look at Landau-gauge propagators in G2 Yang-Mills theory0711.1451 [hep-lat]JHEP 02 (2008) 070November 2007
QCDC. Fischer et al.Large volume behavior of Yang-Mills propagators0709.3205 [hep-lat]PoS LATTICE2007 (2007) 300September 2007
QCDA. MaasTwo- and three-point Green's functions in two-dimensional Landau-gauge Yang-Mills theory0704.0722 [hep-lat]Phys. Rev. D 75, 116004 (2007)April 2007
QCD Phase DiagramA. Cucchieri, A. Maas, T. MendesInfrared properties of propagators in Landau-gauge pure Yang-Mills theory at finite temperaturehep-lat/0702022Phys. Rev. D 75, 076003 (2007)February 2007
QCDA. Cucchieri, A. Maas, T. MendesInfrared-suppressed gluon propagator in 4d Yang-Mills theory in a Landau-like gaugehep-lat/0701011Mod.Phys.Lett.A22 p2429 (2007)January 2007
QCDC. Fischer et al.Large volume behaviour of Yang-Mills propagatorshep-ph/0701050Annals Phys.322 p2916 (2007)January 2007
QCDA. Maas, A. Cucchieri, T. MendesPropagators in Yang-Mills theory for different gaugeshep-lat/0610123PoS CONFINEMENT8 (2008) 181October 2006
Field TheoryA. MaasInstantons, monopoles, vortices, and the Faddeev-Popov operator eigenspectrumhep-th/0610011Nucl.Phys.A 790 (2007) 566October 2006
QCDA. Maas, A. Cucchieri, T. MendesOn the infrared behavior of Green's functions in Yang-Mills theoryhep-lat/0610006Braz.J.Phys. 37 (2007) 219October 2006
QCDA. Cucchieri, A. Maas, T. MendesExploratory study of three-point Green's functions in Landau-gauge Yang-Mills theoryhep-lat/0605011Phys. Rev. D 74, 014503 (2006)May 2006)
Field TheoryA. MaasOn the Faddeev-Popov operator eigenspectrum in topological background fieldshep-th/0603087Braz.J.Phys. 37 (2007) 514March 2006
Field TheoryA. MaasOn the spectrum of the Faddeev-Popov operator in topological background fieldshep-th/0511307Eur.Phys.J. C48, No.1, 179November 2005
ReviewA. Fuster, M. Henneaux, A. Maas,BRST Quantization: a short reviewhep-th/0506098Int. J. Geo. Meth. Mod. Phys., Vol. 2, No. 5 (2005) 939June 2005
ReviewA. MaasGluons at finite temperature in Landau gauge Yang-Mills theoryhep-ph/0506066Mod.Phys.Lett.A 20 (2005) 1797June 2005
TechniquesA. MaasSolving a Set of Truncated Dyson-Schwinger equations with a globally converging methodshep-ph/0504110Comput. Phys. Commun., 175, 167 (2006)April 2005
QCD Phase DiagramA. Maas, R. Alkofer, J. WambachThe High-Temperature Phase of Landau-Gauge Yang-Mills theoryhep-ph/0504019Eur.Phys.J. C42, 93 (2005)April 2005
QCDW. Schleifenbaum et al.Infrared behaviour of the ghost-gluon vertex in Landau gauge Yang-Mills theoryhep-ph/0411052Phys. Rev. D72, 014017 (2005)November 2004
QCD Phase DiagramA. Maas et al.Finite-Temperature Yang-Mills Theory in Landau Gaugehep-ph/0411289AIP Conf.Proc. 756 (2005) p425November 2004
QCDW. Schleifenbaum et al.The Ghost-Gluon Vertex in Landau Gauge Yang-Mills Theoryhep-ph/0411060Subnucl.Ser. 42 (2007) p366November 2004
QCD Phase Diagram Residual Confinement in High-Temperature Yang-Mills Theory

hep-ph/0408299

 

SEWM 2004 p396August 2004
QCD Phase DiagramB. Grüter et al.Temperature Dependence of Gluon and Ghost Propagators in Landau-Gauge Yang-Mills Theory below the Phase Transitionhep-ph/0408282Eur.Phys.J. C42, p109 (2005)August 2004
QCD Phase DiagramA. Maas et al.High-Temperature Limit of Landau-Gauge Yang-Mills Theoryhep-ph/0408074Eur.Phys.J. C37 p335 (2004)August 2004
QCD Phase DiagramB. Grüter et al.QCD Propagators at non-vanishing temperatureshep-ph/0401164Prog.Part.Nucl.Phys. 53 (2004) 343January 2004
QCD Phase DiagramA. Maas et al.Towards the Finite Temperature Gluon Propagator in Landau Gauge Yang-Mills Theoryhep-ph/0210178Subnucl.Ser. 40 (2003) 411October 2002

Note: Only publications with the group leader are listed. Other publications can be found in the links in the team listing.

Selected presentations at conferences and universities during the last five years

TopicTitleWhenWhereOccasion
Quantum GravityGeons as gravity ballsAugust 2025Vienna, AustriaÖPG/SPS Meeting 2025
Higgs PhysicsObservable spectrum in the weak sector of the SMJuly 2025Marseilles, FranceEPSHEP 2025
Quantum GravityComposite Operators in Quantum (super)gravityJuly 2025Marseilles, FranceEPSHEP 2025
OutreachTeilchenphysik und die Grundgesetze der NaturJune 2025Vienna, AustriaVHS seminar series
Higgs PhysicsGauge-invariant spectrum in the weak sector of the standard modelMay 2025Budapest, HungaryACHT meeting
Astroparticle PhysicsScattering of dark pionsMay 2025Budapest, HungaryACHT meeting
Higgs PhysicsGauge Invariance and ParticlesMay 2025Vienna, AustriaInstitute Seminar
Higgs PhysicsIntermediate Vector Bosons and Gauge SymmetryApril 2025Krakow, Poland2nd COMETA general meeting
Higgs PhysicsThe Fröhlich-Morchio-Strocchi mechanism in Multi-boson processesFebruary 2025Vienna, AustriaPolarized Perspectives
Astroparticle PhysicsDark Matter on the LatticeNovember 2024Ljubljana, SloveniaInstitute Seminar
Astroparticle PhysicsDark Matter on the LatticeOctober 2024Edinburgh, UKUniversity Seminar
OutreachQuanten, Symmetrien, Teilchen - Was ist real? (German)October 2024Graz, AustriaUrania Series "Philosophy & Quantum Mechanics"
Astroparticle PhysicsDark matter scatteringAugust 2024Frankfurt, GermanyStrong and Electroweak Matter 2024
Astroparticle PhysicsDark matter scatteringAugust 2024Liverpool, UKLattice 2024
BSM PhysicsThe observable spectrum for GUT-like theoriesAugust 2024Liverpool, UKLattice 2024
Higgs PhysicsSubleading Higgs effects in e+ e- -> fermion+antifermionJuly 2024Prague, Czech RepublicICHEP 2024
Field TheoryObservable spectrum in theories with a Brout-Englert-Higgs effectJuly 2024Graz, AustriaFrom Gauge Symmetries to Gauge-Invariant Approaches
Higgs PhysicsElectroweak Sudakov LogarithmsJuly 2024Graz, AustriaParton Showers and Resummation 2024
Higgs PhysicsGauge invariance and observables in particle physicsApril 2024Edinburgh, UKUniversity Seminar
OutreachSchwerkraftApril 2024Graz, AustriaAlicja Kwade @ Sol LeWitt's Wall. Performed
Higgs PhysicsGauge invariance and observables in particle physicsMarch 2024Milano, ItalyUniversity Seminar
Astroparticle PhysicsScattering of symplectic SIMP dark matter with lattice field theoryMarch 2024Munich, GermanyQuarkonia meet Dark Matter
Higgs PhysicsGauge invariance and observables in particle physicsFebruary 2024Brookhaven, USABNL Seminar
Field TheoryGauge invariance and observables in particle physicsDecember 2023Zürich, SwitzerlandETH & University Seminar
Astroparticle PhysicsScattering in a dark sector described by Sp(4) gauge theoryJuly 2023Fermilab, USALattice 2023
Higgs PhysicsNew precision effects from the Brout-Englert-Higgs mechanismApril 2023Protoroz, SloveniaParticle Physics from Early Universe to Future Colliders
Higgs PhysicsExperimental signatures of subtelties in the Brout-Englert-Higgs mechanismMarch 2023Thuile, ItalyRecontres de Moriond
Quantum GravityPhysical Observables in Canonical Quantum GravityMarch 2023Nijmegen, NetherlandsUniversity Seminar
Quantum GravityPhysical Observables in Canonical Quantum GravityFebruary 2023Waterloo, CanadaPerimeter Institute Seminar
Higgs PhysicsNew effects in precision Brout-Englert-Higgs physicsDecember 2022Ljubljana, SloveniaJSI Seminar
Outreach"Dunkle Energie" und was Physiker damit meinenNovember 2022Vienna, AustriaVHS Vienna
Higgs PhysicsSubleading effects for future lepton collidersSeptember 2022Leoben, AustriaÖPG Meeting
BSM PhysicsA manifestly gauge-invariant treatment of the Minimal Supersymmetric Standard ModelSeptember 2022Leoben, AustriaÖPG Meeting
Higgs PhysicsInvestigating vector boson scatteringAugust 2022Bonn, GermanyLattice 2022
Astroparticle PhysicsDark Isosinglet Mesons in Sp(4) Gauge Theory with Nf=2August 2022Bonn, GermanyLattice 2022
Astroparticle PhysicsStrongly Interacting Dark Matter from Sp(4) Gauge TheoryAugust 2022Stavanger, NorwayConfinement and the Hadron Spectrum 2022
Quantum GravityA new approach to Observables in Quantum GravityJuly 2022Bologna, ItalyICHEP 2022
Higgs PhysicsVector boson scattering from augmented perturbation theoryJuly 2022Bologna, ItalyICHEP 2022
BSM PhysicsPossible discrepancies in GUT spectraJuly 2022Bologna, ItalyICHEP 2022
BSM PhysicsComposite Massless Vector BosonsJuly 2022DESY Zeuthen, GermanyInstitute Seminar
BSM PhysicsSp(4) gauge theory on the LatticeSeptember 2021Innsbruck, AustriaÖPG Meeting
Higgs PhysicsMeasuring the size of the HiggsApril 2022Vienna, AustriaHEPHY Seminar
Higgs PhysicsBloch-Nordsieck restoration for llbar->ttbarJuly 2021Hamburg, GermanyEPSHEP 2021
BSM PhysicsIsospin breaking for dark matterJuly 2021Boston, USALattice 2021
BSM PhysicsSU(3)+Higgs theory: The adjoint caseJuly 2021Boston, USALattice 2021
BSM PhysicsThe spectrum of grand-unified theoriesJuly 2021Boston, USALattice 2021
Astroparticle PhysicsSp(4) SIMP Dark Matter on the latticeJune 2021Online, USALHCP 2021
Higgs PhysicsGauge invariant spectra of SU(2) theories with BEH effectMay 2021MIT. USALattice colloquium
BSM PhysicsThe spectrum of grand-unified theoriesApril 2021Online, HungaryACHT 2021
OutreachWie das Higgs unser Bild von Elementarteilchen verändertMarch 2021Graz, AustriaFacetten der Physik
Field TheoryGauge fixing and the ghost DSEMarch 2021Valencia, SpainFunQCD
Higgs PhysicsProbing Standard-Model Higgs Substructures using Tops and Weak Gauge BosonsMarch 2021Dortmund, GermanyDPG Spring Meeting
OutreachWie das Higgs unser Bild von Elementarteilchen verändertJanuary 2021Vienna, AustriaVHS Vienna
Higgs PhysicsGauge invariant spectra and FMS mechanism for gauge theories with BEH effectOctober 2020Jena, GemanyUniversity Seminar
Higgs PhysicsFermionic spectrum with fermion-Higgs bound states in a SU(2) Wilson-Yukawa modelAugust 2020Online, AsiaAsia-Pacific Symposium for Lattice Field Theory

Linking non-perturbative and perturbative approaches to fragmentation

12th of May - 13th of May 2025

HEPHY Vienna, Austria

 

From gauge symmetries to gauge-invariant approaches

15th of July - 17th of July 2024

University of Graz, Austria

 

Parton Showers and Resummation 2024

2nd of July - 5th of July 2024

University of Graz, Austria

 

Bound states in QCD and beyond IV

15th of February - 18th of February 2022 (was cancelled because of COVID 19)

Schlosshotel Rheinfels, St. Goar, Germany

 

Conceptual and Phenomenological Reflections on Gauge Symmetries, the Brout-Englert-Higgs Mechanism, Particles, and Observables

5th of November 2020 - 6th of November 2020

University of Graz, Graz, Austria

 

ALPS 2020: An Alpine LHC Physics Summit

13th of April 2020 - 18th of April 2020 (was cancelled because of COVID 19)

University Center Obergurgl, Obergurgl, Austria

 

ALPS 2019: An Alpine LHC Physics Summit

22nd of April 2019 - 27th of April 2019

University Center Obergurgl, Obergurgl, Austria

 

Bound states in QCD and beyond III

9th of April 2019 - 12th of April 2019

Schlosshotel Rheinfels, St. Goar, Germany

 

ALPS 2018: An Alpine LHC Physics Summit

15th of April 2018 - 20th of April 2018

University Center Obergurgl, Obergurgl, Austria

 

Bound states in strongly coupled systems

12th of March 2018 -16th of March 2018

Galileo Galieli Institute, Firenze, Italy

 

Bound states in QCD and beyond II

20th of February 2017 - 23rd of February 2017

Schlosshotel Rheinfels, St. Goar, Germany

 

Bound states and resonances (55th International University Week for Theoretical Physics)

13th of February - 17th of February 2017

Castle Röthelstein, Admont, Austria

 

Bound states in QCD and beyond

24th of March 2015 - 27th of March 2015

Schlosshotel Rheinfels, St. Goar, Germany

 

Strongly-interacting Field Theories III

16th of November 2013 - 16th of November 2013

University of Jena, Jena, Germany

 

Quarks, Gluons, and Hadronic Matter under Extreme Conditions II

18th of March 2013 - 21st of March 2013

Schlosshotel Rheinfels, St. Goar, Germany

 

Strongly-interacting Field Theories II

29th of November 2012 - 1st of December 2012

University of Jena, Jena, Germany

 

Quarks, Gluons, and Hadronic Matter under Extreme Conditions

15th of March 2011 - 18th of March 2011

Schlosshotel Rheinfels, St. Goar, Germany

 

Quarks, Hadrons, and the Phase Diagram of QCD

31st of August 2009 - 3rd of September 2009

Schlosshotel Rheinfels, St. Goar, Germany

 

Quarks and Hadrons in Strong QCD

17th of March 2008 - 20th of March 2008

Schlosshotel Rheinfels, St. Goar, Germany

Group leader

Axel Maas

Foundations of gauge theories - Higgs and electroweak physics - QCD - New Physics and dark matter - Quantum Gravity

eMail: axel.maas(at)uni-graz.at or phone +43-316-380-5231 or BlueSky

Complete list of publications from Inspire

Univ.-Prof. Dipl.-Phys.Dr.rer.net. Axel Mass schreibt mit einem Addingstift auf eine Glasscheibe eine physikalische Formel ©Uni Graz/Maas
©Uni Graz/Maas

Postdoc

Sofie Martins

Higgs physics and electroweak physics - New physics

eMail: sofie.martins(at)uni-graz.at

Complete list of publications from Inspire

Picture of Sofie Martins. ©Rasoul Moradi
©Rasoul Moradi

PhD Student

Yannick Dengler

Dark Matter

eMail: yannick.dengler(at)uni-graz.at

Complete list of publications from Inspire

Yannick Dengler ©Uni Graz/Dengler
©Uni Graz/Dengler

Master student

Christina Perner

New physics

eMail: christina.perner(at)edu.uni-graz.at

Picture of Christina Perner

Master student

Patrick Jenny

Higgs and electroweak physics

eMail: patrick.jenny(at)edu.uni-graz.at

Complete list of publications from Inspire

Picture of Patrick Jenny

Bachelor student

Paula Zweynert

Higgs and electroweak physics

eMail: paula.zweynert(at)student.tugraz.at

Picture of Paula Zweynert

Staff

Simon Plätzer

QCD - Higgs physics and electroweak physics - Collider physics - Quantum Gravity

eMail: simon.plaetzer(at)uni-graz.at

Complete list of publications from Inspire

Web page: https://particle.uni-graz.at/en/event-generators-and-resummation/

Dipl.Phys.Dr. rer. nat. Simon Plätzer ©Uni Graz/Plätzer
©Uni Graz/Plätzer

PhD Student

Elizabeth Dobson

New physics

eMail: elizabeth.dobson@uni-graz.at

Complete list of publications from Inspire

Elizabeth Dobson ©Uni Graz/Dobson
©Uni Graz/Dobson

PhD student

Georg Wieland

Higgs and electroweak physics

eMail: georg.wieland(at)uni-graz.at

Picture of Georg Wieland ©Uni Graz/Wieland
©Uni Graz/Wieland

Master student

Johannes Anzengruber

Quantum Gravity

eMail: johannes.anzengruber(at)edu.uni-graz.at

Picture of Johannes Anzengruber

Bachelor student

Julian Czettl

Higgs and electroweak physics

eMail: j.czettl(at)student.tugraz.at

Picture of Julian Czettl

Begin of page section:
Additional information:

University of Graz
Universitaetsplatz 3
8010 Graz
Austria
  • Contact
  • Web Editors
  • Moodle
  • UNIGRAZonline
  • Imprint
  • Data Protection Declaration
  • Accessibility Declaration
Weatherstation
Uni Graz

End of this page section. Go to overview of page sections

End of this page section. Go to overview of page sections

Begin of page section:

End of this page section. Go to overview of page sections